1,963 research outputs found

    Delayed feedback as a means of control of noise-induced motion

    Get PDF
    Time--delayed feedback is exploited for controlling noise--induced motion in coherence resonance oscillators. Namely, under the proper choice of time delay, one can either increase or decrease the regularity of motion. It is shown that in an excitable system, delayed feedback can stabilize the frequency of oscillations against variation of noise strength. Also, for fixed noise intensity, the phenomenon of entrainment of the basic oscillation period by the delayed feedback occurs. This allows one to steer the timescales of noise-induced motion by changing the time delay.Comment: 4 pages, 4 figures. In the replacement file Fig. 2 and Fig. 4(b),(d) were amended. The reason is numerical error found, that affected the quantitative estimates of correlation time, but did not affect the main messag

    Monotone graph limits and quasimonotone graphs

    Full text link
    The recent theory of graph limits gives a powerful framework for understanding the properties of suitable (convergent) sequences (Gn)(G_n) of graphs in terms of a limiting object which may be represented by a symmetric function WW on [0,1][0,1], i.e., a kernel or graphon. In this context it is natural to wish to relate specific properties of the sequence to specific properties of the kernel. Here we show that the kernel is monotone (i.e., increasing in both variables) if and only if the sequence satisfies a `quasi-monotonicity' property defined by a certain functional tending to zero. As a tool we prove an inequality relating the cut and L1L^1 norms of kernels of the form W1W2W_1-W_2 with W1W_1 and W2W_2 monotone that may be of interest in its own right; no such inequality holds for general kernels.Comment: 38 page

    Consequences of critical interchain couplings and anisotropy on a Haldane chain

    Get PDF
    Effects of interchain couplings and anisotropy on a Haldane chain have been investigated by single crystal inelastic neutron scattering and density functional theory (DFT) calculations on the model compound SrNi2_2V2_2O8_8. Significant effects on low energy excitation spectra are found where the Haldane gap (Δ00.41J\Delta_0 \approx 0.41J; where JJ is the intrachain exchange interaction) is replaced by three energy minima at different antiferromagnetic zone centers due to the complex interchain couplings. Further, the triplet states are split into two branches by single-ion anisotropy. Quantitative information on the intrachain and interchain interactions as well as on the single-ion anisotropy are obtained from the analyses of the neutron scattering spectra by the random phase approximation (RPA) method. The presence of multiple competing interchain interactions is found from the analysis of the experimental spectra and is also confirmed by the DFT calculations. The interchain interactions are two orders of magnitude weaker than the nearest-neighbour intrachain interaction JJ = 8.7~meV. The DFT calculations reveal that the dominant intrachain nearest-neighbor interaction occurs via nontrivial extended superexchange pathways Ni--O--V--O--Ni involving the empty dd orbital of V ions. The present single crystal study also allows us to correctly position SrNi2_2V2_2O8_8 in the theoretical DD-JJ_{\perp} phase diagram [T. Sakai and M. Takahashi, Phys. Rev. B 42, 4537 (1990)] showing where it lies within the spin-liquid phase.Comment: 12 pages, 12 figures, 3 tables PRB (accepted). in Phys. Rev. B (2015

    Phase relationships between two or more interacting processes from one-dimensional time series. I. Basic theory.

    Get PDF
    A general approach is developed for the detection of phase relationships between two or more different oscillatory processes interacting within a single system, using one-dimensional time series only. It is based on the introduction of angles and radii of return times maps, and on studying the dynamics of the angles. An explicit unique relationship is derived between angles and the conventional phase difference introduced earlier for bivariate data. It is valid under conditions of weak forcing. This correspondence is confirmed numerically for a nonstationary process in a forced Van der Pol system. A model describing the angles’ behavior for a dynamical system under weak quasiperiodic forcing with an arbitrary number of independent frequencies is derived

    Degree distributions of growing networks

    Get PDF
    The in-degree and out-degree distributions of a growing network model are determined. The in-degree is the number of incoming links to a given node (and vice versa for out-degree. The network is built by (i) creation of new nodes which each immediately attach to a pre-existing node, and (ii) creation of new links between pre-existing nodes. This process naturally generates correlated in- and out-degree distributions. When the node and link creation rates are linear functions of node degree, these distributions exhibit distinct power-law forms. By tuning the parameters in these rates to reasonable values, exponents which agree with those of the web graph are obtained

    Distance distribution in random graphs and application to networks exploration

    Full text link
    We consider the problem of determining the proportion of edges that are discovered in an Erdos-Renyi graph when one constructs all shortest paths from a given source node to all other nodes. This problem is equivalent to the one of determining the proportion of edges connecting nodes that are at identical distance from the source node. The evolution of this quantity with the probability of existence of the edges exhibits intriguing oscillatory behavior. In order to perform our analysis, we introduce a new way of computing the distribution of distances between nodes. Our method outperforms previous similar analyses and leads to estimates that coincide remarkably well with numerical simulations. It allows us to characterize the phase transitions appearing when the connectivity probability varies.Comment: 12 pages, 8 figures (18 .eps files

    The cut metric, random graphs, and branching processes

    Full text link
    In this paper we study the component structure of random graphs with independence between the edges. Under mild assumptions, we determine whether there is a giant component, and find its asymptotic size when it exists. We assume that the sequence of matrices of edge probabilities converges to an appropriate limit object (a kernel), but only in a very weak sense, namely in the cut metric. Our results thus generalize previous results on the phase transition in the already very general inhomogeneous random graph model we introduced recently, as well as related results of Bollob\'as, Borgs, Chayes and Riordan, all of which involve considerably stronger assumptions. We also prove corresponding results for random hypergraphs; these generalize our results on the phase transition in inhomogeneous random graphs with clustering.Comment: 53 pages; minor edits and references update

    Dynamic scaling regimes of collective decision making

    Full text link
    We investigate a social system of agents faced with a binary choice. We assume there is a correct, or beneficial, outcome of this choice. Furthermore, we assume agents are influenced by others in making their decision, and that the agents can obtain information that may guide them towards making a correct decision. The dynamic model we propose is of nonequilibrium type, converging to a final decision. We run it on random graphs and scale-free networks. On random graphs, we find two distinct regions in terms of the "finalizing time" -- the time until all agents have finalized their decisions. On scale-free networks on the other hand, there does not seem to be any such distinct scaling regions
    corecore